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An essential step in an earlier work @ is the disentanglement of the small
operator @ from the large operator 2Jn in the expression M = 2/7%0
Substituting Eq. (43) into Eq. (39) of Ref. 1, we can write the latter in the form

e~ " Me " = e Ine¥nt0e=In = | 4 [(sinh 2J)/2J]0 (69)
If @ commuted with n, we would expect to obtain
el ~1+0 (70)

to first order in @. Thus the effect of the lack of commutativity is to introduce
the correction factor (sinh 2J)/2J. For an isotropic lattice (sinh 2J = 1) the
correction factor amounts to 1.13, and ignoring it would lead to a 139, error.
This kind of problem is familiar in the theory of Lie algebras®® and we will
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give here an alternative derivation of the correction factor as an application
of the well-known Campbell ®-Baker®-Hausdorff® (CBH) formula. Let
A=mn,B=(1/2])0, A = 2J, and

F()\) — e—AA/Ze)\(A-i-B)e—}\A/?_. (71)
From the general CBH formula we know that the general term in the Taylor
expansion of F(X) can be expressed in terms of multiple commutators of 4

and B. But the fact that we are working only to the first order in B brings
about a simplification which is most evident in the first derivative:

F'(/\) = —%e“M’erMA‘“B)e“"Am — %e‘)\A/2€MA+B)A€—AA/2

+ %e—)\AIZ(A + B)e)\(A+B)e-)\A/2 + %e—}\Al2e)\(A+B)(A + B)e—I\AIZ
%e—)\A/zBeA(A+B)e—AA/2 + %_e—AAlzeA(A+B)Be—AA/2

%e—)\AlzBe?\AIZ + %eAAIZBe-—)\Alz (72)

This shows that F’(A) is an even function of A, so that only even terms
appear in its Taylor series,

I

e

F'(N) = F'(0) + (A22DF"(0) + (A*[4NF*(0) + - (73)
with the coefficients given by
F'(0) =B (74a)
F"(0) = 4[4, [4, B]] (74b)
F*(0) = 144, [4, [4, [4, B]]] (74¢)

and so forth. Now a further simplification enters because of the special
relationship of the operators 4 and B. B creates or annihilates pairs, so that
each commutation with 4 (the occupation number) gives the factor +2.
Consequently all of the odd derivations are equal,

F"(0) = F°(0) == B (75)
and as a result of this drastic simplification Eq. (73) can be summed to
F'(A) = Bcosh A (76)

which can also be obtained directly from Eq. (72). Integrating with respect
to A, we find
27 27
FQJ) = F(0) +j F)dr=1+ BJ cosh A dA
0 0

=1 + Bsinh2J = 1 + [(sinh 2)/2710 an

with the correction factor identical to that in Eq. (69).
In conclusion, the author wishes to thank Prof. C.-H. Woo for a provoca-
tive comment which prompted this alternative derivation.
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